Computer simulation of metabolism in palmitate-perfused rat heart. II. Behavior of complete model

Abstract
Intermediary metabolism in rat hearts persfused with 11 mM glucose plus 1 mM palmitate was simulated by a computer model. Several enzyme submodels in a previous version of the isolated rat heart computer model wre improved, and a new fatty acid oxidation pathway model was added. Compartmentation of metabolites in a pseudostationary state was calculated, and its implications are discussed, e.g., citrate level may not regulate glycolysis because it is mostly mitochondrial. Citrate synthetase, controlled largely by its inhibitors, is of key importance in regulating fatty acid metabolism. The response of aconitase to the mitochondrial Mg2+ levels is of major importance in setting both the mitochondrial citrate and isocitrate levels. Pyruvate dehydrogenase is about 96% in the inactive phosphorylated form, and the active form is also 15% inhibited by products, severely limiting pyruvate oxidation and causing preferential utilization of palmitate as the metabolic fuel. The simulation is consistent with a creatine phosphate shuttle which delivers high energy phosphate to the site of its utilization for mechanical work.