PfPDE1, a novel cGMP-specific phosphodiesterase from the human malaria parasitePlasmodium falciparum
- 8 November 2005
- journal article
- Published by Portland Press Ltd. in Biochemical Journal
- Vol. 392 (1) , 221-229
- https://doi.org/10.1042/bj20050425
Abstract
This is the first report of molecular characterization of a novel cyclic nucleotide PDE (phosphodiesterase), isolated from the human malaria parasite Plasmodium falciparum and designated PfPDE1. PfPDE1 cDNA encodes an 884-amino-acid protein, including six putative transmembrane domains in the N-terminus followed by a catalytic domain. The PfPDE1 gene is a single-copy gene consisting of two exons and a 170 bp intron. PfPDE1 transcripts were abundant in the ring form of the asexual blood stages of the parasite. The C-terminal catalytic domain of PfPDE1, produced in Escherichia coli, specifically hydrolysed cGMP with a Km value of 0.65 μM. Among the PDE inhibitors tested, a PDE5 inhibitor, zaprinast, was the most effective, having an IC50 value of 3.8 μM. The non-specific PDE inhibitors IBMX (3-isobutyl-1-methylxanthine), theophylline and the antimalarial chloroquine had IC50 values of over 100 μM. Membrane fractions prepared from P. falciparum at mixed asexual blood stages showed potent cGMP hydrolytic activity compared with cytosolic fractions. This hydrolytic activity was sensitive to zaprinast with an IC50 value of 4.1 μM, but insensitive to IBMX and theophylline. Furthermore, an in vitro antimalarial activity assay demonstrated that zaprinast inhibited the growth of the asexual blood parasites, with an ED50 value of 35 μM. The impact of cyclic nucleotide signalling on the cellular development of this parasite has previously been discussed. Thus this enzyme is suggested to be a novel potential target for the treatment of the disease malaria.Keywords
This publication has 54 references indexed in Scilit:
- Effects of dipyridamole on Plasmodium falciparum -infected erythrocytesZeitschrift Fur Parasitenkunde-Parasitology Research, 2002
- Genome sequence of the human malaria parasite Plasmodium falciparumNature, 2002
- The pathogenic basis of malariaNature, 2002
- CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choiceNucleic Acids Research, 1994
- Basic Local Alignment Search ToolJournal of Molecular Biology, 1990
- Basic local alignment search toolJournal of Molecular Biology, 1990
- Separation and Concentration of Schizonts of Plasmodium falciparum by Percoll Gradients1The Journal of Protozoology, 1983
- Human Malaria Parasites in Continuous CultureScience, 1976
- The Determination of Enzyme Dissociation ConstantsJournal of the American Chemical Society, 1934