Protein Kinase C-λ Knockout in Embryonic Stem Cells and Adipocytes Impairs Insulin-Stimulated Glucose Transport
- 1 February 2004
- journal article
- Published by The Endocrine Society in Molecular Endocrinology
- Vol. 18 (2) , 373-383
- https://doi.org/10.1210/me.2003-0087
Abstract
Atypical protein kinase C (aPKC) isoforms have been suggested to mediate insulin effects on glucose transport in adipocytes and other cells. To more rigorously test this hypothesis, we generated mouse embryonic stem (ES) cells and ES-derived adipocytes in which both aPKC-lambda alleles were knocked out by recombinant methods. Insulin activated PKC-lambda and stimulated glucose transport in wild-type (WT) PKC-lambda(+/+), but not in knockout PKC-lambda(-/-), ES cells. However, insulin-stimulated glucose transport was rescued by expression of WT PKC-lambda in PKC-lambda(-/-) ES cells. Surprisingly, insulin-induced increases in both PKC-lambda activity and glucose transport were dependent on activation of proline-rich tyrosine protein kinase 2, the ERK pathway, and phospholipase D (PLD) but were independent of phosphatidylinositol 3-kinase (PI3K) in PKC-lambda(+/+) ES cells. Interestingly, this dependency was completely reversed after differentiation of ES cells to adipocytes, i.e. insulin effects on PKC-lambda and glucose transport were dependent on PI3K, rather than proline-rich tyrosine protein kinase 2/ERK/PLD. As in ES cells, insulin effects on glucose transport were absent in PKC-lambda(-/-) adipocytes but were rescued by expression of WT PKC-lambda in these adipocytes. Our findings suggest that insulin activates aPKCs and glucose transport in ES cells by a newly recognized PI3K-independent ERK/PLD-dependent pathway and provide a compelling line of evidence suggesting that aPKCs are required for insulin-stimulated glucose transport, regardless of whether aPKCs are activated by PI3K-dependent or PI3K-independent mechanisms.Keywords
This publication has 17 references indexed in Scilit:
- Activation of the ERK Pathway and Atypical Protein Kinase C Isoforms in Exercise- and Aminoimidazole-4-carboxamide- 1-β-d-riboside (AICAR)-stimulated Glucose TransportJournal of Biological Chemistry, 2002
- Glucose Activates Protein Kinase C-ζ/λ through Proline-rich Tyrosine Kinase-2, Extracellular Signal-regulated Kinase, and Phospholipase DJournal of Biological Chemistry, 2001
- Effects of Adenoviral Gene Transfer of Wild-Type, Constitutively Active, and Kinase-Defective Protein Kinase C-λ on Insulin-Stimulated Glucose Transport in L6 Myotubes1Endocrinology, 2000
- Thiazolidinedione Treatment Enhances Insulin Effects on Protein Kinase C-ζ/λ Activation and Glucose Transport in Adipocytes of Nondiabetic and Goto-Kakizaki Type II Diabetic RatsJournal of Biological Chemistry, 2000
- PPARγ Is Required for the Differentiation of Adipose Tissue In Vivo and In VitroMolecular Cell, 1999
- Insulin Activates Protein Kinases C-ζ and C-λ by an Autophosphorylation-dependent Mechanism and Stimulates Their Translocation to GLUT4 Vesicles and Other Membrane Fractions in Rat AdipocytesPublished by Elsevier ,1999
- Evidence for Involvement of Protein Kinase C (PKC)-ζ and Noninvolvement of Diacylglycerol-Sensitive PKCs in Insulin-Stimulated Glucose Transport in L6 Myotubes*Endocrinology, 1997
- Protein Kinase C-ζ as a Downstream Effector of Phosphatidylinositol 3-Kinase during Insulin Stimulation in Rat AdipocytesPublished by Elsevier ,1997
- Activation of Protein Kinase C (α, β, and ζ) by Insulin in 3T3/L1 CellsJournal of Biological Chemistry, 1997
- HPRT-deficient (Lesch–Nyhan) mouse embryos derived from germline colonization by cultured cellsNature, 1987