Viral Discovery and Sequence Recovery Using DNA Microarrays
Top Cited Papers
Open Access
- 17 November 2003
- journal article
- research article
- Published by Public Library of Science (PLoS) in PLoS Biology
- Vol. 1 (2) , e2-E2
- https://doi.org/10.1371/journal.pbio.0000002
Abstract
Because of the constant threat posed by emerging infectious diseases and the limitations of existing approaches used to identify new pathogens, there is a great demand for new technological methods for viral discovery. We describe herein a DNA microarray-based platform for novel virus identification and characterization. Central to this approach was a DNA microarray designed to detect a wide range of known viruses as well as novel members of existing viral families; this microarray contained the most highly conserved 70mer sequences from every fully sequenced reference viral genome in GenBank. During an outbreak of severe acute respiratory syndrome (SARS) in March 2003, hybridization to this microarray revealed the presence of a previously uncharacterized coronavirus in a viral isolate cultivated from a SARS patient. To further characterize this new virus, approximately 1 kb of the unknown virus genome was cloned by physically recovering viral sequences hybridized to individual array elements. Sequencing of these fragments confirmed that the virus was indeed a new member of the coronavirus family. This combination of array hybridization followed by direct viral sequence recovery should prove to be a general strategy for the rapid identification and characterization of novel viruses and emerging infectious disease.Keywords
This publication has 11 references indexed in Scilit:
- The Genome Sequence of the SARS-Associated CoronavirusScience, 2003
- Characterization of a Novel Coronavirus Associated with Severe Acute Respiratory SyndromeScience, 2003
- A Novel Coronavirus Associated with Severe Acute Respiratory SyndromeNew England Journal of Medicine, 2003
- Microarray-based detection and genotyping of viral pathogensProceedings of the National Academy of Sciences, 2002
- Molecular identification of novel virusesTrends in Microbiology, 1998
- A common RNA motif in the 3' end of the genomes of astroviruses, avian infectious bronchitis virus and an equine rhinovirus.Journal of General Virology, 1998
- Amplification and subtraction methods and their application to the discovery of novel human viruses.1997
- Identification of Herpesvirus-Like DNA Sequences in AIDS-Sssociated Kaposi's SarcomaScience, 1994
- Genetic Identification of a Hantavirus Associated with an Outbreak of Acute Respiratory IllnessScience, 1993
- Isolation of a cDNA cLone Derived from a Blood-Borne Non-A, Non-B Viral Hepatitis GenomeScience, 1989