Overland Precipitation Estimation from TRMM Passive Microwave Observations

Abstract
Procedures for passive microwave precipitation estimation over land are investigated based on a large database of Tropical Rainfall Measuring Mission (TRMM) observations. The procedures include components for rain area delineation, convective/stratiform (C/S) rain classification, and estimation of vertically integrated water content or surface rainfall rate. The investigated algorithms include neural network schemes for both the rain area and C/S classification and statistical algorithms for precipitation estimation. The coincident active and passive microwave observations from TRMM, with the active (TRMM precipitation radar) observations providing the reference values for the various precipitation parameters, are used for algorithm calibration and validation. The calibration and validation are based on 1 yr of data over the continental United States and a repetitive sampling strategy that make the results statistically significant. Good agreement is demonstrated with TRMM precipitation radar observations in rain delineation, and it is shown that C/S classification can considerably improve precipitation estimation. It is also shown that better performance may be achieved in estimating vertically integrated hydrometeor contents as compared with rainfall rates.