Equilibrium shapes of nonaxisymmetric liquid bridges of arbitrary volume in gravitational fields and their potential energy

Abstract
Bifurcation diagrams of nonaxisymmetric liquid bridges subject to a lateral gravitational force and to both lateral and axial gravitational forces are found by solving the Young–Laplace equation for the interface by a finite difference method. The potential energy of the equilibrium shapes is also calculated. The results obtained show that the slenderness of the bridge determines whether the breaking of the liquid bridge subject to a lateral gravitational force leads to equal or unequal drops. The stability limits calculated are compared with the ones obtained using asymptotic techniques around the cylinder, the agreement being extremely good for a wide range of the parameters.

This publication has 9 references indexed in Scilit: