Influence in covariance structure analysis: with an application to confirmatory factor analysis

Abstract
Influence functions are derived for the parameters in covariance structure analysis, where the parameters are estimated by minimizing a discrepancy function between the assumed covariance matrix and the sample covariance matrix. The case of confirmatory factor analysis is studied precisely with a numerical example. Comparing with a general procedure called one-step estimation, the proposed procedure has two advantages:1) computing cost is cheaper, 2) the property that arbitrary influence can be decomposed into a fi-nite number of components discussed by Tanaka and Castano-Tostado(1990) can be used for efficient computing and the characterization of a covariance structure model from the sensitivity perspective. A numerical comparison is made among the confirmatory factor analysis and some procedures of ex-ploratory factor analysis by using the decomposition mentioned above.

This publication has 14 references indexed in Scilit: