Red Galaxy Clustering in the NOAO Deep Wide‐Field Survey
- 1 November 2003
- journal article
- research article
- Published by American Astronomical Society in The Astrophysical Journal
- Vol. 597 (1) , 225-238
- https://doi.org/10.1086/377332
Abstract
We have measured the clustering of 0.30 < z < 0.90 red galaxies and constrained models of the evolution of large-scale structure using the initial 1.2 deg2 data release of the NOAO Deep Wide-Field Survey (NDWFS). The area and BWRI passbands of the NDWFS allow samples of 103 galaxies to be selected as a function of spectral type, absolute magnitude, and photometric redshift. Spectral synthesis models can be used to predict the colors and luminosities of a galaxy population as a function of redshift. We have used PEGASE2 models, with exponentially declining star formation rates, to estimate the observed colors and luminosity evolution of galaxies and to connect, as an evolutionary sequence, related populations of galaxies at different redshifts. A red galaxy sample, with present-day rest-frame Vega colors of BW-R > 1.44, was chosen to allow comparisons with the 2dF Galaxy Redshift Survey and Sloan Digital Sky Survey. We find the spatial clustering of red galaxies to be a strong function of luminosity, with r0 increasing from 4.4 ± 0.4 h-1 Mpc at MR - 5 log h ≈ -20.0 to 11.2 ± 1.0 h-1 Mpc at MR - 5 log h ≈ -22.0. Clustering evolution measurements using samples where the rest-frame selection criteria vary with redshift, including all deep single-band magnitude limited samples, are biased because of the correlation of clustering with rest-frame color and luminosity. The clustering of -21.5 < MR - 5 log h < -20.5, BW-R > 1.44 galaxies exhibits no significant evolution over the redshift range observed with r0 = 6.3 ± 0.5 h-1 Mpc in comoving coordinates. This is consistent with recent ΛCDM models in which the bias of L* galaxies undergoes rapid evolution and r0 evolves very slowly at z < 2.Keywords
All Related Versions
This publication has 53 references indexed in Scilit:
- The Angular Correlation Function of Galaxies from Early Sloan Digital Sky Survey DataThe Astrophysical Journal, 2002
- The clustering evolution of the galaxy distributionMonthly Notices of the Royal Astronomical Society, 2001
- The 2dF QSO Redshift Survey -- II. Structure and evolution at high redshiftMonthly Notices of the Royal Astronomical Society, 2001
- The Clustering of AGN[CLC]s[/CLC] and Galaxies at Intermediate RedshiftThe Astronomical Journal, 2001
- Evolution in the Clustering of Galaxies forz < 1.0The Astrophysical Journal, 2000
- Bayesian Photometric Redshift EstimationThe Astrophysical Journal, 2000
- SExtractor: Software for source extractionAstronomy and Astrophysics Supplement Series, 1996
- Spectral evolution of stellar populations using isochrone synthesisThe Astrophysical Journal, 1993
- Biased clustering in the cold dark matter cosmogonyMonthly Notices of the Royal Astronomical Society, 1989
- Colors and magnitudes predicted for high redshift galaxiesThe Astrophysical Journal Supplement Series, 1980