Antifungal activity of synthetic peptide derived from halocidin, antimicrobial peptide from the tunicate, Halocynthia aurantium

Abstract
Halocidin is an antimicrobial peptide isolated from the hemocytes of the tunicate. Among the several known synthetic halocidin analogues, di-K19Hc has been previously confirmed to have the most profound antibacterial activity against antibiotic-resistant bacteria. This peptide has been considered to be an effective candidate for the development of a new type of antibiotic. In this study, we have assessed the antifungal activity of di-K19Hc, against a panel of fungi including several strains of Aspergillus and Candida. As a result, we determined that the MICs of di-K19Hc against six Candida albicans and two Aspergillus species were below 4 and 16 microg/ml, respectively, thereby indicating that di-K19Hc may be appropriate for the treatment of several fungal diseases. We also conducted an investigation into di-K19Hc's mode of action against Candida albicans. Our colony count assay showed that di-K19Hc killed C. albicans within 30s. Di-K19Hc bound to the surface of C. albicans via a specific interaction with beta-1,3-glucan, which is one of fungal cell wall components. Di-K19Hc also induced the formation of ion channels within the membrane of C. albicans, and eventually observed cell death, which was confirmed via measurements of the K+ released from C. albicans cells which had been treated with di-K19Hc, as well as by monitoring of the uptake of propidium iodide into the C. albicans cells. This membrane-attacking quality of di-K19Hc was also visualized via confocal laser and scanning electron microscopy.