A theoretical model for quantitatively inherited traits influenced by nuclear-cytoplasmic interactions

Abstract
Cytoplasmic genes of crop species exhibit non-Mendelian inheritance and affect quantitative traits such as biomass and grain yield. Photosynthesis and respiration are physiological processes responsible, in part, for the expression of such quantitative traits and are regulated by enzymes encoded in both the cytoplasm and nucleus. Cytoplasmic genes are located in the chloroplast and mitochondrial genomes. Unlike the nuclear genome, the cytoplasmic genomes consist of single, circular, double-stranded molecules of DNA, and in many crop species, the cytoplasmic genomes are inherited solely through the maternal parent. Maternal inheritance of cytoplasmic genomes and Mendelian inheritance of the nuclear genome were used to model the genotypic value of an individual. The model then was utilized to derive genetic variances and covariances for a random-mating population. Finally, the use of reciprocal mating designs to estimate variance components was investigated.