In Vivo Anti-Inflammatory Effect of Statins Is Mediated by Nonsterol Mevalonate Products

Abstract
This study set out to clarify whether the inhibition of sterol or nonsterol derivatives arising from mevalonate biotransformation plays a major role in the in vivo anti-inflammatory action of statins. Hepatic synthesis of all these derivatives was inhibited in mice by administered statins, whereas squalestatin inhibited only sterol derivatives. Using a short-term treatment schedule, we found that statins reduced the hepatic activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase without affecting blood cholesterol. This treatment inhibited lipopolysaccharide- and carrageenan-induced pouch leukocyte recruitment and the exudate production of interleukin-6, monocyte chemotactic protein-1, and RANTES. Coadministration of mevalonate reversed the effect of statin on leukocyte recruitment. The inhibition of sterol synthesis by squalestatin did not have any anti-inflammatory effect, indicating that the biosynthesis of nonsterol compounds arising from mevalonate is crucial for the in vivo regulation of cytokin...