Chloroplast transfer in Nicotiana based on metabolic complementation between irradiated and iodoacetate treated protoplasts

Abstract
Protoplasts of a light sensitive plastome mutant of Nicotiana tabacum (2 n=48) were irradiated and fused with iodoacetate-treated Nicotiana plumbaginifolia (2 n=20) protoplasts. Treated parental protoplasts were unable to divide. Metabolic complementation, however, helped the recovery of interspecific fusion products which survived and formed calli. Altogether 40 clones were investigated. N. plumbaginifolia plants were obtained in 15 clones (38%), somatic hybrids in 23 clones, and both types of regenerates were found in 2 clones. Irradiation therefore significantly increased the frequency of segregant formation with the non-irradiated N. plumbaginifolia nuclei (the frequency was 1.4% in the absence of irradiation). Regenerated plants in most cases (31 out of 34) contained chloroplasts from the irradiated parent. In 6 clones plants were obtained with both types of chloroplast. Thus, irradiated N. tabacum chloroplasts had an improved chance of dominating the heterokaryonderived cells, many of which contained N. plumbaginifolia nucleus. The system described should be generally applicable for the transfer of chloroplasts without the use of selectable genetic markers.