Abstract
This review describes the development of a new, synthetically useful method of asymmetric synthesis in organic photochemistry. Similar in many ways to the Pasteur procedure for resolving racemic carboxylic acids and organic amines, the method relies on the use of crystalline organic salts in which the enantioselectivity of a photochemical reaction of an achiral organic ion (for example, a carboxylate anion) is governed in the solid state by the presence of an optically pure counterion (for example, an optically active ammonium ion). Such optically pure counterions are termed ionic chiral auxiliaries. Salts containing ionic chiral auxiliaries are required to crystallize in chiral space groups, which provide the asymmetric environment necessary for chiral induction. Using this methodology, we have obtained near-quantitative optical yields in a wide variety of photochemical reactions.Key words: photochemistry, solid state, chiral auxiliaries, asymmetric synthesis, crystal structure–reactivity relationships.

This publication has 33 references indexed in Scilit: