Induction of 33-kD and 60-kD Peroxidases during Ethylene-Induced Senescence of Cucumber Cotyledons
- 1 July 1988
- journal article
- research article
- Published by Oxford University Press (OUP) in Plant Physiology
- Vol. 87 (3) , 609-615
- https://doi.org/10.1104/pp.87.3.609
Abstract
Ethylene enhanced the senescence of cucumber (Cucumis sativus L. cv ''Poinsett 76'') cotyledons. The effect of 10 microliters per liter ethylene was inhibited by 1 millimolar silver thiosulfate, an inhibitor of ethylene action. An increase in proteins with molecular weights of 33 to 30 kilodaltons and lower molecular weights (25, 23, 20, 16, 12, and 10 kilodaltons) were observed in sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels after ethylene enhanced senescence. The measurement of DNase and RNase activity in gels indicated that these new proteins were not nucleases. Two proteins from ethylene-treated cotyledons were purified on the basis of their association with a red chromaphore and subsequently were identified as peroxidases. The molecular weights and isoelectric points (pI) of two of these peroxidases were 33 kilodaltons (cationic, pI = 8.9) and 60 kilodaltons (anionic, pI = 4.0). The observation that [35S]Na2SO4 was incorporated into these proteins during ethylene-enhanced senescence suggests that these peroxidases represent newly synthesized proteins. Antibodies to the 33-kilodalton peroxidase precipitated two in vitro translation products from RNA isolated from ethylene-treated but not from control cucumber seedlings. This indicates that the increase in 33-kilodalton peroxidase activity represents de novo protein synthesis. Both forms of peroxidase degraded chlorophyll in vitro, which is consistent with the hypothesis that peroxidases have catabolic or scavenging functions in senescent tissues.This publication has 7 references indexed in Scilit:
- Catabolites of Chlorophyll in Senescent LeavesJournal of Plant Physiology, 1987
- Role of Ethylene in Lactuca sativa cv `Grand Rapids' Seed GerminationPlant Physiology, 1986
- Activity staining of nucleolytic enzymes after sodium dodecyl sulfate-polyacrylamide gel electrophoresis: Use of aqueous isopropanol to remove detergent from gelsAnalytical Biochemistry, 1982
- Covalent Structure of Turnip Peroxidase 7. Cyanogen Bromide Fragments, Complete Structure and Comparison to Horseradish Peroxidase CEuropean Journal of Biochemistry, 1980
- Partial Purification and Characterization of the mRNA for α-Amylase from Barley Aleurone LayersPlant Physiology, 1980
- Involvement of Hydrogen Peroxide in the Regulation of Senescence in PearPlant Physiology, 1977
- EVIDENCE FOR NONIDENTICAL CHAINS IN BETA-GALACTOSIDASE OF ESCHERICHIA COLI K121965