Quantitative and Qualitative Changes in V-J α Rearrangements During Mouse Thymocytes Differentiation

Abstract
Knowledge of the complete nucleotide sequence of the mouse TCRAD locus allows an accurate determination V-J rearrangement status. Using multiplex genomic PCR assays and real time PCR analysis, we report a comprehensive and systematic analysis of the V-J recombination of TCR α chain in normal mouse thymocytes during development. These respective qualitative and quantitative approaches give rise to four major points describing the control of gene rearrangements. (a) The V-J recombination pattern is not random during ontogeny and generates a limited TCR α repertoire; (b) V-J rearrangement control is intrinsic to the thymus; (c) each V gene rearranges to a set of contiguous J segments with a gaussian-like frequency; (d) there are more rearrangements involving V genes at the 3′ side than 5′ end of V region. Taken together, this reflects a preferential association of V and J gene segments according to their respective positions in the locus, indicating that accessibility of both V and J regions is coordinately regulated, but in different ways. These results provide a new insight into TCR α repertoire size and suggest a scenario for V usage during differentiation.