Abstract
Pigeon peas [Cajanus cajan (L.) Millsp.] were grown in soil columns containing 15N-enriched organic matter. Seasonal N2 fixation activity was determined by periodically assaying plants for reduction of C2H2. N2 fixation rose sharply from the first assay period at 51 days after planting to a peak of activity between floral initiation and fruit set. N2 fixation (acetylene reduction) activity dropped concomitantly with pod maturation but recovered after pod harvests. Analysis of 15N content of plant shoots revealed that approximately 91 to 94% of plant N was derived from N2 fixation. The effect of inoculation with hydrogenase-positive and hydrogenase-negative rhizobia was examined. Pigeon peas inoculated with strain P132 (hydrogenase-positive) yielded significantly more total shoot N than other inoculated or uninoculated treatments. However, two other hydrogenase-positive strains did not yield significantly more total shoot N than a hydrogenase-negative strain. The extent of nodulation by inoculum strains compared to indigenous rhizobia was determined by typing nodules according to intrinsic antibiotic resistance of the inoculum strains. The inoculum strains were detected in almost all typed nodules of inoculated plants.