Human Monoclonal Antibody Combination against SARS Coronavirus: Synergy and Coverage of Escape Mutants
Top Cited Papers
Open Access
- 4 July 2006
- journal article
- research article
- Published by Public Library of Science (PLoS) in PLoS Medicine
- Vol. 3 (7) , e237
- https://doi.org/10.1371/journal.pmed.0030237
Abstract
Experimental animal data show that protection against severe acute respiratory syndrome coronavirus (SARS-CoV) infection with human monoclonal antibodies (mAbs) is feasible. For an effective immune prophylaxis in humans, broad coverage of different strains of SARS-CoV and control of potential neutralization escape variants will be required. Combinations of virus-neutralizing, noncompeting mAbs may have these properties. Human mAb CR3014 has been shown to completely prevent lung pathology and abolish pharyngeal shedding of SARS-CoV in infected ferrets. We generated in vitro SARS-CoV variants escaping neutralization by CR3014, which all had a single P462L mutation in the glycoprotein spike (S) of the escape virus. In vitro experiments confirmed that binding of CR3014 to a recombinant S fragment (amino acid residues 318–510) harboring this mutation was abolished. We therefore screened an antibody-phage library derived from blood of a convalescent SARS patient for antibodies complementary to CR3014. A novel mAb, CR3022, was identified that neutralized CR3014 escape viruses, did not compete with CR3014 for binding to recombinant S1 fragments, and bound to S1 fragments derived from the civet cat SARS-CoV-like strain SZ3. No escape variants could be generated with CR3022. The mixture of both mAbs showed neutralization of SARS-CoV in a synergistic fashion by recognizing different epitopes on the receptor-binding domain. Dose reduction indices of 4.5 and 20.5 were observed for CR3014 and CR3022, respectively, at 100% neutralization. Because enhancement of SARS-CoV infection by subneutralizing antibody concentrations is of concern, we show here that anti-SARS-CoV antibodies do not convert the abortive infection of primary human macrophages by SARS-CoV into a productive one. The combination of two noncompeting human mAbs CR3014 and CR3022 potentially controls immune escape and extends the breadth of protection. At the same time, synergy between CR3014 and CR3022 may allow for a lower total antibody dose to be administered for passive immune prophylaxis of SARS-CoV infection.Keywords
This publication has 59 references indexed in Scilit:
- Lifetime Socioeconomic Position and Twins' Health: An Analysis of 308 Pairs of United States Women TwinsPLoS Medicine, 2005
- Purification of severe acute respiratory syndrome hyperimmune globulins for intravenous injection from convalescent plasmaTransfusion, 2005
- Recurrent mutations associated with isolation and passage of SARS coronavirus in cells from non‐human primatesJournal of Medical Virology, 2005
- Cytokine Responses in Severe Acute Respiratory Syndrome Coronavirus-Infected Macrophages In Vitro: Possible Relevance to PathogenesisJournal of Virology, 2005
- Evaluation of Human Monoclonal Antibody 80R for Immunoprophylaxis of Severe Acute Respiratory Syndrome by an Animal Study, Epitope Mapping, and Analysis of Spike VariantsJournal of Virology, 2005
- SARS Transmission Pattern in Singapore Reassessed by Viral Sequence Variation AnalysisPLoS Medicine, 2005
- Molecular and Biological Characterization of Human Monoclonal Antibodies Binding to the Spike and Nucleocapsid Proteins of Severe Acute Respiratory Syndrome CoronavirusJournal of Virology, 2005
- An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirusNature Medicine, 2004
- SARS-Associated Coronavirus Quasispecies in Individual PatientsNew England Journal of Medicine, 2004
- Selection and Application of Human Single Chain Fv Antibody Fragments from a Semi-synthetic Phage Antibody Display Library with Designed CDR3 RegionsJournal of Molecular Biology, 1995