N-Methylaspartate-Evoked Liberation of Taurine and Phosphoethanolamine In Vivo: Site of Release

Abstract
The effect of N-methyl-D,L-aspartic acid (NMA) on extracellular amino acids was studied in the rabbit hippocampus with the brain dialysis technique. Administration of 0.5 or 5 mM NMA caused a concentration-dependent liberaton of taurine and phosphoethanolamine (PEA). Taurine increased by 1.200% and PEA by 2,400% during perfusion with 5 mM NMA whereas most other amino acids rose by 20-100%. The effect of NMA appeared to be receptor-mediated, as coperfusion of NMA appeared to be receptor-mediated, as coperfusion with D-2-amino-5-phosphonovaleric acid curtailed the NMA response by some 90%. The NMA-stimulated release of taurine and PEA was suppressed when Ca2+ was omitted and further inhibited when Co2+ was included in the perfusion medium. The effect of NMA was mimicked by the endogenous NMA agonist quinolinic acid and the partial NMA agonist D,L-cis-2,3-piperidine dicarboxylic acid. Although the NMA-evoked release of taurine and PEA was Ca2+-dependent in vivo, NMA had no effect on Ca2+ accumulation in hippocampal synaptosomes. The previously reported NMA-induced activation of dendrite Ca2+ spikes and the lack of effect on synaptosomal Ca2+ uptake suggest that taurine and PEA are released from sites other than nerve terminals, possibly from dendrosomatic sites. This notion was strengthened by the absenceof an effect of NMA on the efflux of radiolabelled taurine from hippocampal synptosomes. In contrast, high K+ stimulated synaptosomal uptake of Ca2+ and release of taurine.