Abstract
The survival probability of a particle that performs a random walk on a linear chain with randomly distributed traps is considered. An asymptotically exact solution was found, valid for large step numbers n and all trap concentrations c. The survival probability depends upon the combination x=[πln(1c)]23n13 of the variables n and c only and is in leading order equal to (8π)(23π)12x32exp(3x2). The analytical result includes correction terms and is confirmed by Monte Carlo simulations.

This publication has 14 references indexed in Scilit: