Transient Differentiation of Adult Human Bone Marrow Cells into Neuron-like Cells in Culture: Development of Morphological and Biochemical Traits Is Mediated by Different Molecular Mechanisms
- 1 December 2004
- journal article
- research article
- Published by Mary Ann Liebert Inc in Stem Cells and Development
- Vol. 13 (6) , 625-635
- https://doi.org/10.1089/scd.2004.13.625
Abstract
Studies on rodent bone marrow stromal cells (MSCs) have revealed a capacity, for at least a portion of cells, to express neuron-like traits after differentiation in culture. Little, however, is known about the ability of human MSCs in this regard. We show here that incubation with certain differentiation cocktails, particularly those that include reagents that increase cellular cAMP levels, produces a rapid (1–4 h) and transient (24–48 h) transformation of nearly all hMSCs into neuron-like cells displaying a complex network of processes using phase or scanning electron microscopic optics. In addition, differentiated human (h) MSCs express increased quantities of neuron-[β-tubulin III, neurofilament (NF), neuronal-specific enolase (NSE)] and glial- [glial fibrillary acidic protein (GFAP)] specific proteins and mRNAs, which are also expressed in low levels in undifferentiated MSCs. In contrast, the mesenchymal marker, fibronectin, which is highly expressed in the undifferentiated state, is reduced following differentiation. These biochemical changes, but not the acquisition of a neuron-like appearance, are partially inhibited by incubation of hMSCs with protein (cycloheximide) and mRNA (actinomycin D) synthesis inhibitors with differentiating reagents. Only incubation with 100 ng/ml colchicine, which disrupts the microtubular cytoskeleton, prevents the conversion of hMSCs into neuron- like cells. These results demonstrate that hMSCs acquire the morphological appearance and the biochemical makeup typical of neurons by independently regulated mechanisms.Keywords
This publication has 46 references indexed in Scilit:
- Little Evidence for Developmental Plasticity of Adult Hematopoietic Stem CellsScience, 2002
- RETRACTED ARTICLE: Pluripotency of mesenchymal stem cells derived from adult marrowNature, 2002
- Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusionNature, 2002
- Changing potency by spontaneous fusionNature, 2002
- Turning Blood into Brain: Cells Bearing Neuronal Antigens Generated in Vivo from Bone MarrowScience, 2000
- From Marrow to Brain: Expression of Neuronal Phenotypes in Adult MiceScience, 2000
- Adult rat and human bone marrow stromal cells differentiate into neuronsJournal of Neuroscience Research, 2000
- Stiff microtubules and neuronal morphologyTrends in Neurosciences, 1994
- Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue.The Journal of cell biology, 1980
- Action of drugs on microtubulesLife Sciences, 1975