Convection in superposed fluid and porous layers

Abstract
A nonlinear computational investigation of thermal convection due to heating from below in a porous layer underlying a fluid layer has been carried out. The motion of the fluid in the porous layer is governed by Darcy's equation with the Brinkman terms for viscous effects and the Forchheimer term for inertial effects included. The motion in the fluid layer is governed by the Navier-Stokes equation. The flow is assumed to be two-dimensional and periodic in the horizontal direction, with a wavelength equal to the critical value at onset as predicted by the linear stability theory. The numerical scheme used is a combined Galerkin and finite-difference method, and appropriate boundary conditions are applied at the interface. Results have been obtained for depth ratios and 0.2 show good agreement with the experimental results of Chen & Chen (1989).