An E-selectin-IgG chimera supports sialylated moiety dependent adhesion of colon carcinoma cells under fluid flow

Abstract
To further characterize the molecular mechanisms that govern carcinoma cell adhesion to stimulated endothelium, we studied the adhesion of a human colon carcinoma cell line, KM12-L4, to an E-selectin-IgG1 chimera and interleukin (IL)-1β-stimulated human umbilical vein endothelial cells (HUVEC) underin vitro fluid flow conditions. Between 0.6 and 1.8 dynes/cm2, KM12-L4 cells attach to and roll on IL-1β-stimulated HUVEC. The adhesion is E-selectin dependent and diminished upon pretreatment of the KM12-L4 cells with neuraminidase (neuraminidase sensitive). Between 0.7 and 1.8 dynes/cm2, surfaces coated with an E-selectin-IgG1 chimera support attachment and rolling of KM12-L4 cells. The adhesion to the E-selectin-IgG1 chimera is blocked by an antibody to the lectin domain of E-selectin and is neuraminidase sensitive. Rolling KM12-L4 cells exhibit variable velocity motion over both IL-1β-stimulated HUVEC and E-selectin-IgG1 chimera-coated surfaces. Our results provide the first direct evidence that sialylated moieties are involved in the adhesion of carcinoma cells to IL-1β-stimulated endothelium under flow conditions; E-selectin-IgG1 chimeras can support cell attachment and rolling under defined flow conditions; the topology of the endothelium is not the sole cause of variable velocity motion observed in cell rolling systems.