SHIP-mediated inhibition of K562 erythroid differentiation requires an intact catalytic domain and Shc binding site

Abstract
Growing evidence supports a role for the SHIP inositol 5′-phosphatase in the negative regulation of a variety of receptor-mediated signaling pathways in hematopoietic cells. SHIP expression among cultured cell lines was examined and found to be restricted to cells of hematopoietic origin, with the exception of the K562 erythroleukemia cell line, in which SHIP protein and mRNA were undetectable. The absence of endogenous SHIP in K562 cells provided a useful system to study the role of SHIP in growth and differentiation. When stably expressed in K562 cells, SHIP was found to be constitutively tyrosine phosphorylated and associated with endogenous Shc and Grb-2. Stable expression of SHIP did not affect growth of the cells but resulted in decreased synthesis of hemoglobin protein and ε-globin mRNA in response to hemin, an inducer of erythroid differentiation. This effect was not due to increased cell death in the SHIP-expressing lines following hemin stimulation, but was likely the result of an impaired differentiation program in these cells. Mutational analysis indicated that SHIP must retain both an intact catalytic domain and Shc binding site to efficiently inhibit K562 erythroid differentiation.