Abstract
A highly accurate quasi-static model of a microstrip over a semiconductor layer has been developed. The model agrees with full-wave calculations in all three modes of propagation (skin-effect, slow-wave, and dielectric quasi-TEM), for both the attenuation constant alpha and the propagation constant beta over a very wide range of dimension, substrate conductivity, and frequency. To achieve this level of agreement, a nonuniform cross-section, transverse resonance technique has been applied to find the series impedance per unit length of the microstrip transmission line.

This publication has 8 references indexed in Scilit: