Induction of Nonphotochemical Energy Dissipation and Absorbance Changes in Leaves (Evidence for Changes in the State of the Light-Harvesting System of Photosystem II in Vivo)
Open Access
- 1 July 1993
- journal article
- Published by Oxford University Press (OUP) in Plant Physiology
- Vol. 102 (3) , 741-750
- https://doi.org/10.1104/pp.102.3.741
Abstract
Simultaneous measurements of nonphotochemical quenching of chlorophyll fluorescence and absorbance changes in the 400- to 560-nm region have been made following illumination of dark-adapted leaves of the epiphytic bromeliad Guzmania monostachia. During the first illumination, an absorbance change at 505 nm occurred with a half-time of 45 s as the leaf zeaxanthin content rose to 14% of total leaf carotenoid. Selective light scattering at 535 nm occurred with a half-time of 30 s. During a second illumination, following a 5-min dark period, quenching and the 535-nm absorbance change occurred more rapidly, reaching a maximum extent within 30 s. Nonphotochemical quenching of chlorophyll fluorescence was found to be linearly correlated to the 535-nm absorbance change throughout. Examination of the spectra of chlorophyll fluorescence emission at 77 K for leaves sampled at intervals during this regime showed selective quenching in the light-harvesting complexes of photosystem II (LHCII). The quenching spectrum of the reversible component of quenching had a maximum at 700 nm, indicating quenching in aggregated LHCII, whereas the irreversible component represented a quenching of 680-nm fluorescence from unaggregated LHCII. It is suggested that this latter process, which is associated with the 505-nm absorbance change and zeaxanthin formation, is indicating a change in state of the LHCII complexes that is necessary to amplify or activate reversible pH-dependent energy dissipation, which is monitored by the 535-nm absorbance change. Both of the major forms of nonphotochemical energy dissipation in vivo are therefore part of the same physiological photoprotective process and both result from alterations in the LHCII system.Keywords
This publication has 8 references indexed in Scilit:
- Control of the light‐harvesting function of chloroplast membranes by aggregation of the LHCII chlorophyll—protein complexFEBS Letters, 1991
- Relative Contributions of Zeaxanthin-Related and Zeaxanthin-Unrelated Types of `High-Energy-State' Quenching of Chlorophyll Fluorescence in Spinach Leaves Exposed to Various Environmental ConditionsPlant Physiology, 1990
- Light-Induced Spectral Absorbance Changes in Relation to Photosynthesis and the Epoxidation State of Xanthophyll Cycle Components in Cotton LeavesPlant Physiology, 1989
- Photoinhibition and Zeaxanthin Formation in Intact LeavesPlant Physiology, 1987
- A quantitative study of the slow decline of chlorophyll a fluorescence in isolated chloroplastsBiochimica et Biophysica Acta (BBA) - Bioenergetics, 1979
- The high-energy state of the thylakoid system as indicated by chlorophyll fluorescence and chloroplast shrinkageBiochimica et Biophysica Acta (BBA) - Bioenergetics, 1973
- An Ascorbate-induced Absorbance Change in Chloroplasts from Violaxanthin De-epoxidationPlant Physiology, 1972
- Conformational changes of chloroplasts induced by illumination of leaves in vivoBiochimica et Biophysica Acta (BBA) - Bioenergetics, 1969