Contribution of Reactive Oxygen Species to Isoflurane-induced Sensitization of Cardiac Sarcolemmal Adenosine Triphosphate–sensitive Potassium Channel to Pinacidil
- 1 March 2004
- journal article
- research article
- Published by Wolters Kluwer Health in Anesthesiology
- Vol. 100 (3) , 575-580
- https://doi.org/10.1097/00000542-200403000-00017
Abstract
Background: Myocardial protection by volatile anesthetics involves activation of cardiac adenosine triphosphate-sensitive potassium (K(ATP)) channels. The authors have previously shown that isoflurane enhances sensitivity of the sarcolemmal K(ATP) channel to the opener, pinacidil. Because reactive oxygen species seem to be mediators in anesthetic preconditioning, the authors investigated whether they contribute to the mechanism of the sensitization effect by isoflurane. Methods: Ventricular myocytes were isolated from guinea pig hearts for the whole cell patch clamp recordings of the sarcolemmal K(ATP) channel current (I(KAPT)). Free radical scavengers N-acetyl-L-cysteine, carnosine, superoxide dismutase, and catalase were used to investigate whether reactive oxygen species mediate isoflurane facilitation of the channel opening by pinacidil. A possible role of the mitochondrial K(ATP) channels was tested using a blocker of these channels, 5-hydroxydecanoate. Results: The mean density (+/- SEM) of I(KAPT) elicited by pinacidil (20 microM) was 18.9 +/- 1.8 pA/pF (n = 11). In the presence of isoflurane (0.55 mM), the density of pinacidil-activated I(KAPT) increased to 38.5 +/- 2.4 pA/pF (n = 9). Concurrent application of isoflurane and N-acetyl-L-cysteine decreased the sensitization effect by isoflurane in a concentration-dependent manner, whereby the densities of I(KAPT) were 32.6 +/- 1.4 (n = 6), 26.2 +/- 2.3 (n = 6), and 19.4 +/- 2.1 pA/pF (n = 8) at 100, 250, and 500 microM N-acetyl-L-cysteine, respectively. Concurrent application of isoflurane and carnosine (100 microM), superoxide dismutase (100 U/ml), or catalase (100 U/ml) attenuated the densities of I(KAPT) to 27.9 +/- 2.6, 27.2 +/- 2.9, and 25.9 +/- 2.2 pA/pF, respectively. None of the scavengers affected activation of I(KAPT) by pinacidil alone. 5-Hydroxydecanoate (100 microM) did not alter the sensitization effect by isoflurane, and the density of I(KAPT) in this group was 37.1 +/- 3.8 pA/pF (n= 6). Conclusion: These results suggest that reactive oxygen species contribute to the mechanism by which isoflurane sensitizes the cardiac sarcolemmal K(ATP) channel to the opener, pinacidil.Keywords
This publication has 40 references indexed in Scilit:
- Volatile Anesthetics Mimic Cardiac Preconditioning by Priming the Activation of Mitochondrial KATPChannels via Multiple Signaling PathwaysAnesthesiology, 2002
- Sarcolemmal and Mitochondrial Adenosine Triphosphate– dependent Potassium ChannelsAnesthesiology, 2000
- Ischemic Preconditioning: From Adenosine Receptor to KATP ChannelAnnual Review of Physiology, 2000
- Sarcolemmal Versus Mitochondrial ATP-Sensitive K + Channels and Myocardial PreconditioningCirculation Research, 1999
- Isoflurane Mimics Ischemic Preconditioning via Activation of KATPChannelsAnesthesiology, 1997
- Effects of Volatile Anesthetic Isoflurane on ATP-Sensitive K+Channels in Rabbit Ventricular MyocytesBiochemical and Biophysical Research Communications, 1996
- Antioxidative Properties of Histidine and Its Effect on Myocardial Injury During Ischemia/Reperfusion in Isolated Rat HeartJournal of Cardiovascular Pharmacology, 1995
- Alterations in electrical activity and membrane currents induced by intracellular oxygen-derived free radical stress in guinea pig ventricular myocytes.Circulation Research, 1993
- The oxygen free radical system: from equations through membrane-protein interactions to cardiovascular injury and protectionCardiovascular Research, 1992
- Cellular electrophysiological basis for oxygen radical-induced arrhythmias. A patch-clamp study in guinea pig ventricular myocytes.Circulation, 1991