Structural heterogeneity at the UDP-glucuronosyltransferase 1 locus: functional consequences of three novel missense mutations in the human UGT1A7 gene
- 1 October 2000
- journal article
- research article
- Published by Wolters Kluwer Health in Pharmacogenetics
- Vol. 10 (7) , 629-644
- https://doi.org/10.1097/00008571-200010000-00006
Abstract
One of the most important mechanisms involved in host defense against xenobiotic chemicals and endogenous toxins is the glucuronidation catalysed by UDP-glucuronosyltransferase enzymes (UGT). The role of genetic factors in determining variable rates of glucuronidation is not well understood, but phenotypic evidence in support of such variation has been reported. In the present study, six single nucleotide polymorphisms were discovered in the first exon of the UGT1A7 gene, which codes for the putative substrate-binding domain, revealing a high structural heterogeneity at the UGT1 gene locus. The new UGT1A7 proteins differ in their primary structure at amino acid positions 129, 131 and 208, creating four distinct UGT1A7 allelic variants in the human population:UGT1A7*1 (N129R131W208), *2 (K129K131W208), *3 (K129K131R208), and *4 (N129R131R208). In functional studies, HEK cells stably transfected to express the four allelic UGT1A7 variants exhibited significant differences in catalytic activity towards 3-, 7-, and 9-hydroxy-benzo(a)pyrene. UGT1A7*3 exhibited a 5.8-fold lower relative V max compared to wild-type *1, whereas *2 and *4 had a 2.6- and 2.8-fold lower relative V max than *1, respectively, suggesting that these mutations confer slow glucuronidation phenotype. Kinetic characterization suggested that these differences were primarily attributable to altered V max. Additionally, it suggested that each amino acid substitutions can independently affect the UGT1A7 catalytic activity, and that their effects are additive. The expression pattern of UGT1A7 studied herein and its catalytic activity profile suggest a possible role of UGT1A7 in the detoxification and elimination of carcinogenic products in lung. A population study demonstrated that a considerable proportion of the population (15.3%) was found homozygous for the low activity allele containing all three missense mutations, UGT1A7*3. These findings suggest that further studies are needed to investigate the impact of the low UGT1A7 conjugator genotype on individual susceptibility to chemical-induced diseases and responses to therapeutic drugs.Keywords
This publication has 31 references indexed in Scilit:
- Characterization of single-nucleotide polymorphisms in coding regions of human genesNature Genetics, 1999
- Glucuronidation of 7-Ethyl-10-hydroxycamptothecin (SN-38) by the Human UDP-Glucuronosyltransferases Encoded at the UGT1 LocusBiochemical and Biophysical Research Communications, 1999
- Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complicationsThe Lancet, 1999
- Racial variability in the UDP-glucuronosyltransferase 1 ( UGT1A1 ) promoter: A balanced polymorphism for regulation of bilirubin metabolism?Proceedings of the National Academy of Sciences, 1998
- Characterization and regulation of UDP-glucuronosyltransferases in steroid target tissuesThe Journal of Steroid Biochemistry and Molecular Biology, 1998
- Genetic polymorphism in the human UGT1A6 (planar phenol) UDP-glucuronosyltransferase: pharmacological implicationsPharmacogenetics, 1997
- The role of carcinogen-metabolizing enzyme polymorphisms in cancer susceptibilityReproductive Toxicology, 1997
- Genetic inheritance of Gilbert's syndromeThe Lancet, 1995
- Mechanisms of inherited deficiencies of multiple UDP‐glucuronosyltransferase isoforms in two patients with Crigler‐Najjar syndrome, type IThe FASEB Journal, 1992
- Prevention of pre-PCR mis-priming and primer dimerization improves low-copy-number amplificationsNucleic Acids Research, 1992