Induction of flowering by seasonal changes in photoperiod
Open Access
- 4 March 2004
- journal article
- review article
- Published by Springer Nature in The EMBO Journal
- Vol. 23 (6) , 1217-1222
- https://doi.org/10.1038/sj.emboj.7600117
Abstract
In many plants, major developmental transitions such as the initiation of flowering are synchronized to the changing seasons. Day length provides one of the environmental cues used to achieve this. We describe the molecular mechanisms that measure day length and control flowering in Arabidopsis . Also, we compare these mechanisms with those that control flowering time in rice. This comparison suggests that components of the Arabidopsis regulatory network are conserved in other species, but that their regulation can be altered to generate different phenotypic responses.Keywords
This publication has 57 references indexed in Scilit:
- Photoreceptor Regulation of CONSTANS Protein in Photoperiodic FloweringScience, 2004
- Regulation of flowering time by light qualityNature, 2003
- LHY and CCA1 Are Partially Redundant Genes Required to Maintain Circadian Rhythms in ArabidopsisDevelopmental Cell, 2002
- Critical Role for CCA1 and LHY in Maintaining Circadian Rhythmicity in ArabidopsisCurrent Biology, 2002
- Reciprocal Regulation Between TOC1 and LHY / CCA1 Within the Arabidopsis Circadian ClockScience, 2001
- Cloning of the Arabidopsis Clock Gene TOC1 , an Autoregulatory Response Regulator HomologScience, 2000
- Activation Tagging of the Floral Inducer FTScience, 1999
- A Pair of Related Genes with Antagonistic Roles in Mediating Flowering SignalsScience, 1999
- Control of Circadian Rhythms and Photoperiodic Flowering by the Arabidopsis GIGANTEA GeneScience, 1999
- GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domainsThe EMBO Journal, 1999