A model heat-exchange apparatus for the investigation of fouling of stainless steel surfaces by milk I. Deposit formation at 100 °C

Abstract
Summary: A model heat-exchange apparatus was used to investigate the factors affecting deposit formation from milk on a stainless steel surface at 100 °C. The structure and composition of the deposits were determined by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and chemical analysis after solution in alkali. The effects of changing the pH, preheating and skimming of the milk were similar to those observed in a small-scale continuous ultra high temperature plant. The time course of deposit formation showed that a lag phase did not occur, but the deposit which formed after more than 45 min was more porous than that formed after shorter times. Most (50–90%) of the fresh deposit was readily removed by sonication, leaving a sublayer richer in minerais than the original. The results provide evidence for the two-layer model for deposit formation proposed by Tissier & Lalande (1986).