Threshold and Receptor Reserve in the Action of Neurohypophyseal Peptides
Open Access
- 1 August 1970
- journal article
- Published by Rockefeller University Press in The Journal of general physiology
- Vol. 56 (2) , 250-271
- https://doi.org/10.1085/jgp.56.2.250
Abstract
The interrelationship of several physiological receptors which influence the hydroosmotic response of the toad urinary bladder was studied employing neurohypophyseal peptides, prostaglandin E1, theophylline, and cyclic nucleotides. The binding property of agonists (pD2), synergists (pS2), competitive antagonists (pA2), and noncompetitive antagonists (pD2') was determined after a suitable methodology had been developed. A series of neurohypophyseal peptides was examined in detail for their catalytic activity. It was found that the replacement of the hydroxy radical of the tyrosine residue in oxytocin by a methoxy and then by an ethoxy radical led to a progressive decline in the catalytic activity of the hormone—corresponding to a change from agonist to partial agonist to competitive antagonist. [4-Leucine]-mesotocin behaved as a competitive antagonist of oxytocin. Prostaglandin E1 (PGE1) was found to be a noncompetitive inhibitor of neurohypophyseal peptides and theophylline; whereas the maximal hydroosmotic response of the bladder to [2-O-methyltyrosine]-oxytocin and theophylline was greatly depressed by PGE1, the response to saturating concentrations of oxytocin was only slightly diminished—a finding which reveals a "receptor reserve" for oxytocin. Saturating concentrations of [2-O-ethyltyrosine]-oxytocin, inactive per se, potentiate theophylline—disclosing a "threshold phenomenon" for the mediation of neurohypophyseal hormone action. It is concluded that neurohypophyseal peptides are capable of producing graded effects on adenyl cyclase both below and above the range of enzyme activity which evokes graded changes in membrane permeability.Keywords
This publication has 28 references indexed in Scilit:
- Metabolism of adenosine 3′,5′-monophosphate by epithelial cells of the toad bladderJournal of Clinical Investigation, 1968
- A Sensitive Hydroosmotic Toad Bladder AssayThe Journal of general physiology, 1968
- 4-Leucine-Oxytocin: Natriuretic, Diuretic, and Antivasopressin PolypeptideScience, 1968
- Effects of Prostaglandins on Adenosine 3′,5′-Monophosphate Levels in Fat and Other TissuesJournal of Biological Chemistry, 1968
- Effect of Prostaglandin (PGEI) on the Permeability Response of Toad Bladder to Vasopressin, Theophylline and Adenosine 3′,5′-monophosphateNature, 1965
- Studies on the Movement of Water through the Isolated Toad Bladder and Its Modification by VasopressinThe Journal of general physiology, 1962
- Receptor-reserve and threshold-phenomena. II. Theories on drug-action and a quantitative approach to spare receptors and threshold values.1962
- PDX, PAX AND PD'X VALUES IN THE ANALYSIS OF PHARMACODYNAMICS1957
- Receptor Occupancy and Tissue ResponseNature, 1956
- ACTION OF INHIBITORS AT THE MYONEURAL JUNCTIONThe Journal of general physiology, 1951