Abstract
In practical quantum key distribution, weak coherent state is often used and the channel transmittance can be very small therefore the protocol could be totally insecure under the photon-number-splitting attack. We propose an efficient method to verify the upper bound of the fraction of counts caused by multi-photon pluses transmitted from Alice to Bob, given whatever type of Eve's action. The protocol simply uses two coherent states for the signal pulses and vacuum for decoy pulse. Our verified upper bound is sufficiently tight for QKD with very lossy channel, in both asymptotic case and non-asymptotic case. The coherent states with mean photon number from 0.2 to 0.5 can be used in practical quantum cryptography. We show that so far our protocol is the $only$ decoy-state protocol that really works for currently existing set-ups.

This publication has 0 references indexed in Scilit: