Abstract
In timber infested by brown-rot fungi, a rapid loss of strength is attributed to production of hydroxyl radicals (HO.). The hydroxyl radicals are produced by the Fenton reaction [Fe(II)/H2O2], but the pathways leading to Fe(II) and H2O2have remained unclear. Cellobiose dehydrogenase, purified from cultures ofConiophora puteana, has been shown to couple oxidation of cellodextrins to conversion of Fe(III) to Fe(II). Two characteristics of brown rot are release of oxalic acid and lowering of the local pH, often to about pH 2. Modelling of Fe(II) speciation in the presence of oxalate has revealed that Fe(II)-oxalate complexes are important at pH 4-5, but at pH 2 almost all Fe(II) is in an uncomplexed state which reacts very slowly with dioxygen. Diffusion of Fe(II) away from the hyphae will promote conversion to Fe(II)-oxalate and autoxidation with H2O2as product. Thus the critical Fe(II)/H2O2combination will be generated at a distance, enabling hydroxyl radicals to be formed without damage to the hyphae.