Nitric oxide and nitrosative stress tolerance in bacteria
- 1 February 2005
- journal article
- review article
- Published by Portland Press Ltd. in Biochemical Society Transactions
- Vol. 33 (1) , 176-180
- https://doi.org/10.1042/bst0330176
Abstract
Nitric oxide is not only an obligatory intermediate in denitrification, but also a signalling and defence molecule of major importance. However, the basis of resistance to NO and RNS (reactive nitrogen species) is poorly understood in many microbes. The cellular targets of NO and RNS [e.g. metalloproteins, thiols in proteins, glutathione and Hcy (homocysteine)] may themselves serve as signal transducers, sensing NO and RNS, and resulting in altered gene expression and synthesis of protective enzymes. The properties of a number of such protective mechanisms are outlined here, including globins, flavorubredoxin, diverse enzymes with NO- or S-nitrosothiol-reducing properties and other redox proteins with poorly defined roles in protection from nitrosative stresses. However, the most fully understood mechanism for NO detoxification involves the enterobacterial flavohaemoglobin (Hmp). Aerobically, Hmp detoxifies NO by acting as an NO denitrosylase or 'oxygenase' and thus affords inducible protection of growth and respiration, and aids survival in macrophages. The flavohaemoglobin-encoding gene of Escherichia coli, hmp, responds to the presence of NO and RNS in an SoxRS-independent manner. Nitrosating agents, such as S-nitrosoglutathione, deplete cellular Hcy and consequently modulate activity of the MetR regulator that binds the hmp promoter. Regulation of Hmp synthesis under anoxic conditions involves nitrosylation of 4Fe-4S clusters in the global transcriptional regulator, FNR. The foodborne microaerophilic pathogen, Campylobacter jejuni, also expresses a haemoglobin, Cgb, but it does not possess the reductase domain of Hmp. A Cgb-deficient mutant of C. jejuni is hypersensitive to RNS, whereas cgb expression and holoprotein synthesis are specifically increased on exposure to RNS, resulting in NO-insensitive respiration. A 'systems biology' approach, integrating the methodologies of bacterial molecular genetics and physiology with post-genomic technologies, promises considerable advances in our understanding of bacterial NO tolerance mechanisms in pathogenesis.Keywords
This publication has 29 references indexed in Scilit:
- Flavohemoglobin Hmp, but Not Its Individual Domains, Confers Protection from Respiratory Inhibition by Nitric Oxide in Escherichia coliPublished by Elsevier ,2003
- Hydroxylamine Reductase Activity of the Hybrid Cluster Protein from Escherichia coliJournal of Bacteriology, 2002
- The NorR Protein of Escherichia coli Activates Expression of the Flavorubredoxin Gene norV in Response to Reactive Nitrogen SpeciesJournal of Bacteriology, 2002
- NO sensing by FNR: regulation of the Escherichia coli NO-detoxifying flavohaemoglobin, HmpThe EMBO Journal, 2002
- A Novel Type of Nitric-oxide ReductaseJournal of Biological Chemistry, 2002
- Respiratory Detoxification of Nitric Oxide by the Cytochromec Nitrite Reductase of Escherichia coliJournal of Biological Chemistry, 2002
- The Biochemistry and Physiology of S-NitrosothiolsAnnual Review of Pharmacology and Toxicology, 2002
- Enzymatic Removal of Nitric Oxide Catalyzed by Cytochrome c ′ in Rhodobacter capsulatusJournal of Bacteriology, 2001
- Kinetic and Mechanistic Studies of the NO•-Mediated Oxidation of Oxymyoglobin and OxyhemoglobinBiochemistry, 2001
- New functions for the ancient globin family: bacterial responses to nitric oxide and nitrosative stressMolecular Microbiology, 2000