Particle formation and growth at five rural and urban sites
Open Access
- 27 August 2010
- journal article
- Published by Copernicus GmbH in Atmospheric Chemistry and Physics
- Vol. 10 (16) , 7979-7995
- https://doi.org/10.5194/acp-10-7979-2010
Abstract
Ultrafine particle (UFP) number and size distributions were simultaneously measured at five urban and rural sites during the summer of 2007 in Ontario, Canada as part of the Border Air Quality and Meteorology Study (BAQS-Met 2007). Particle formation and growth events at these five sites were classified based on their strength and persistence as well as the variation in geometric mean diameter. Regional nucleation and growth events and local short-lived strong nucleation events were frequently observed at the near-border rural sites, upwind of industrial sources. Surprisingly, the particle number concentrations at one of these sites were higher than the concentrations at a downtown site in a major city, despite its high traffic density. Regional nucleation and growth events were favored during intense solar irradiance and in less polluted cooler drier air. The most distinctive regional particle nucleation and growth event during the campaign was observed simultaneously at all five sites, which were up to 350 km apart. Although the ultrafine particle concentrations and size distributions generally were spatially heterogeneous across the region, a more uniform spatial distribution of UFP across the five areas was observed during this regional nucleation event. Thus, nucleation events can cover large regions, contributing to the burden of UFP in cities and potentially to the associated health impacts on urban populations. Local short-lived nucleation events at the three near-border sites during this summer three-week campaign were associated with high SO2, which likely originated from US and Canadian industrial sources. Hence, particle formation in southwestern Ontario appears to often be related to anthropogenic gaseous emissions but biogenic emissions at times also contribute. Longer-term studies are needed to help resolve the relative contributions of anthropogenic and biogenic emissions to nucleation and growth in this region.Keywords
All Related Versions
This publication has 49 references indexed in Scilit:
- Inter-Comparison of a Fast Mobility Particle Sizer and a Scanning Mobility Particle Sizer Incorporating an Ultrafine Water-Based Condensation Particle CounterAerosol Science and Technology, 2009
- New particle formation in the Front Range of the Colorado Rocky MountainsAtmospheric Chemistry and Physics, 2008
- Chemical composition of atmospheric nanoparticles formed from nucleation in Tecamac, Mexico: Evidence for an important role for organic species in nanoparticle growthGeophysical Research Letters, 2008
- Characteristics of regional nucleation events in urban East St. LouisAtmospheric Environment, 2007
- Rapid Formation of Sulfuric Acid Particles at Near-Atmospheric ConditionsScience, 2005
- Measurements of Mexico City nanoparticle size distributions: Observations of new particle formation and growthGeophysical Research Letters, 2004
- On the spatial extent and evolution of coastal aerosol plumesJournal of Geophysical Research: Atmospheres, 2002
- Nucleation events in the continental boundary layer: Influence of physical and meteorological parametersAtmospheric Chemistry and Physics, 2002
- How significantly does coagulational scavenging limit atmospheric particle production?Journal of Geophysical Research: Atmospheres, 2001
- A residence time probability analysis of sulfur concentrations at grand Canyon National ParkAtmospheric Environment (1967), 1985