Instability in the ct MR2 strain of Drosophila melanogaster: Role of P element functions and structure of revertants

Abstract
Simultaneous multiple transpositions and longterm genetic instability have been described in the ct MR2 strain of Drosophila melanogaster and its derivatives. This strain originated from a cross that was dysgenic in the P-M system. While spontaneous instability declined over 2 years, instability has been reactivated by backcross to the progenitor P element bearing strain MRh12/Cy. We show here using germline transformation that active P factor alone cannot mimic the effect of this cross, suggesting that MRh12/Cy contains some other activator. In addition, we have observed that ct + exceptional progeny arise in the F1 s well as the F2 generations. Molecular analysis of X chromosomes from some ct + progeny indicates that phenotypic reversion of the ct mutation can arise through two unrelated mechanisms.