The mGluR5 antagonist MPEP decreases operant ethanol self-administration during maintenance and after repeated alcohol deprivations in alcohol-preferring (P) rats

Abstract
Rationale Recent research indicates that blockade of mGluR5 modifies the reinforcing properties of ethanol. Objectives The present studies examined the effects of mGluR5 receptor blockade in a genetic model of high ethanol intake, the alcohol-preferring (P) rat, on the maintenance of operant ethanol self-administration. In addition, we determined the effect of 2-methyl-6-(phenylethyl)-pyridine (MPEP) on the repeated alcohol deprivation effect. Methods Twelve male (P) rats were trained in experimental sessions to self-administer 10% w/v ethanol via a sucrose-fading procedure. After the establishment of operant ethanol self-administration, subjects were treated with various metabotropic glutamate receptor (mGluR) subtype antagonists immediately prior to experimental sessions: the mGluR5 antagonist MPEP (1, 3, and 10 mg/kg); the mGluR2–3 antagonist LY-341495 (1, 3, and 10 mg/kg); and the mGluR1 antagonist CPCCOEt (1, 3, and 10 mg/kg). After determining the role of mGluR5 in the maintenance of operant ethanol self-administration, we examined the role of this receptor in relapse following repeated periods of alcohol deprivation by depriving subjects of ethanol exposure for three 2-week deprivation periods. Results The mGluR5 antagonist MPEP dose-dependently decreased operant ethanol self-administration. In addition, rats that received saline immediately prior to repeated alcohol deprivation sessions self-administered ethanol at increasing levels that were above those achieved in the last operant-conditioning session prior to the initial 2-week deprivation period. This repeated alcohol deprivation effect was prevented in subjects pretreated with MPEP (10 mg/kg). Conclusions These findings suggest that mGluR5 receptors may modulate both the maintenance of operant ethanol self-administration and abstinence-induced increases in ethanol intake.