Cytosolic malate dehydrogenase confers selectivity of the nucleic acid-conducting channel
Open Access
- 22 January 2002
- journal article
- research article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 99 (3) , 1707-1712
- https://doi.org/10.1073/pnas.022355499
Abstract
We have described previously a cell surface channel that is highly selective for nucleic acids. Nucleic acid conductance is 10 pS and the channel is at least 10,000-fold more selective for oligodeoxynucleotides than any anion tested (1). Herein we provide evidence that the nucleic acid-conducting channel (NACh) is a heteromultimeric complex of at least two proteins; a 45-kDa pore-forming subunit (p45) and a 36-kDa regulatory subunit (p36). Reconstitution of p45 in planar lipid bilayers resulted in formation of a channel which gated in the absence of nucleic acid and which was more selective for anions (including oligonucleotide) than cations. This channel exhibited transitions from one level of current to another (or to the closed state); however the incidence of transitions was rare. Channel activity was not observed when p36 was reconstituted alone. Reconstitution of p36 with p45 restored nucleic acid dependence and selectivity to the channel. Protein sequence analysis identified p36 as cytosolic malate dehydrogenase (cMDH). Experiments were performed to prove that cMDH is a regulatory subunit of NACh. Selective activity was observed when p45 was reconstituted with pig heart cMDH but not with mitochondrial MDH. Both the enzyme substrate l-malate and antiserum raised against cMDH block NACh activity. These data demonstrate that a nucleic acid conducting channel is a complex of at least two proteins, p45 and cMDH. Furthermore, these data establish that cMDH confers nucleic acid selectivity of the channel.Keywords
This publication has 18 references indexed in Scilit:
- A Mammalian H + Channel Generated Through Alternative Splicing of the NADPH Oxidase Homolog NOH-1Science, 2000
- Structure of a Voltage-Dependent K+ Channel β SubunitCell, 1999
- Malate dehydrogenase: distribution, function and properties.1998
- Molecular Cloning and Functional Reconstitution of a Urate Transporter/ChannelJournal of Biological Chemistry, 1997
- Mass Spectrometric Sequencing of Proteins from Silver-Stained Polyacrylamide GelsAnalytical Chemistry, 1996
- Transport of phosphorothioate oligonucleotides in kidney: Implications for molecular therapyKidney International, 1995
- Organ distribution and stability of phosphorothioated oligodeoxyribonucleotides in miceBiopharmaceutics & Drug Disposition, 1992
- A comparison between low background silver diammine and silver nitrate protein stainsElectrophoresis, 1992
- Pharmacokinetics, biodistribution, and stability of oligodeoxynucleotide phosphorothioates in mice.Proceedings of the National Academy of Sciences, 1991
- A simple method for displaying the hydropathic character of a proteinJournal of Molecular Biology, 1982