Metallicity of the Intergalactic Medium Using Pixel Statistics. III. Silicon

Abstract
(Modified) We study the abundance of silicon in the intergalactic medium by analyzing the statistics of SiIV, CIV, and HI pixel optical depths in a sample of 19 high-quality quasar absorption spectra spanning redshifts z ~ 2 - 4, which we compare to realistic spectra drawn from a hydrodynamical simulation. We find that silicon is highly overabundant relative to carbon and that the scatter in Si/C is much smaller than that in C/H, implying a common origin for Si and C. The inferred [Si/C] depends upon the shape of the UV background (UVB) (harder backgrounds leading to higher [Si/C]), ranging from [Si/C] ~ 1.5 for a quasar-only UVB, to [Si/C] ~ 0.25 for a UVB including both galaxies and an artificial softening. For our fiducial UVB, which includes both quasars and galaxies, we find [Si/C]=0.77 +/- 0.05, with a possible systematic error of ~ 0.1 dex. There is no evidence for evolution in [Si/C] and the data are inconsistent with previous claims of a sharp change in the SiIV/CIV ratio (or the UVB) at z ~ 3. Comparisons with low-metallicity halo stars and nucleosynthetic yields suggest that either our fiducial UVB is too hard or that supermassive Pop III stars might have to be included. The inferred [Si/C] corresponds to a contribution to the cosmic Si abundance of [Si/H] = -2.0, a significant fraction of all Si production expected by z ~ 3.Comment: 13 pages, 8 figures. Accepted by ApJ. Revised version with minor corrections to match proofed published articl