Effects of dl-2-Amino-5-Phosphonovalerate on Metabolism of Catecholamines in Synaptosomes from Rat Brain

Abstract
Incubation of synaptosomes from rat brain with dl-2-amino-5-phosphonovalerate (APV) stimulated an increased release of dopamine, and this effect was strictly dependent on the extrasynaptosomal calcium level. APV increased biosynthesis of dopamine from tyrosine by 30%, whereas monoamine oxidase activity was inhibited by 30%. When synaptosomes were incubated with radioactive dopamine, APV caused a large decrease in incorporation of label into 3,4-dihydroxyphenylacetic acid but greatly increased incorporation into norepinephrine and its N-methyl derivatives. Quantification of dopamine and its metabolites in synaptosomes, using electrochemical detection, indicated that the presence of APV resulted in changes in the absolute levels of the aforementioned dopamine metabolites similar to the changes in radiolabel incorporation. Omission of Ca2+ from the extrasynaptosomal medium greatly diminished the APV-induced changes in catecholamine metabolism. The metabolic changes appear to largely result from an increased intrasynaptosomal Ca2+ level due to the APV-induced increase in calcium permeability of the plasma membrane.