Virus-Like Particles of SARS-Like Coronavirus Formed by Membrane Proteins from Different Origins Demonstrate Stimulating Activity in Human Dendritic Cells
Open Access
- 16 July 2008
- journal article
- research article
- Published by Public Library of Science (PLoS) in PLOS ONE
- Vol. 3 (7) , e2685
- https://doi.org/10.1371/journal.pone.0002685
Abstract
The pathogenesis of SARS coronavirus (CoV) remains poorly understood. In the current study, two recombinant baculovirus were generated to express the spike (S) protein of SARS-like coronavirus (SL-CoV) isolated from bats (vAcBS) and the envelope (E) and membrane (M) proteins of SARS-CoV, respectively. Co-infection of insect cells with these two recombinant baculoviruses led to self-assembly of virus-like particles (BVLPs) as demonstrated by electron microscopy. Incorporation of S protein of vAcBS (BS) into VLPs was confirmed by western blot and immunogold labeling. Such BVLPs up-regulated the level of CD40, CD80, CD86, CD83, and enhanced the secretion of IL-6, IL-10 and TNF-α in immature dendritic cells (DCs). Immune responses were compared in immature DCs inoculated with BVLPs or with VLPs formed by S, E and M proteins of human SARS-CoV. BVLPs showed a stronger ability to stimulate DCs in terms of cytokine induction as evidenced by 2 to 6 fold higher production of IL-6 and TNF-α. Further study indicated that IFN-γ+ and IL-4+ populations in CD4+ T cells increased upon co-cultivation with DCs pre-exposed with BVLPs or SARS-CoV VLPs. The observed difference in DC-stimulating activity between BVLPs and SARS CoV VLPs was very likely due to the S protein. In agreement, SL-CoV S DNA vaccine evoked a more vigorous antibody response and a stronger T cell response than SARS-CoV S DNA in mice. Our data have demonstrated for the first time that SL-CoV VLPs formed by membrane proteins of different origins, one from SL-CoV isolated from bats (BS) and the other two from human SARS-CoV (E and M), activated immature DCs and enhanced the expression of co-stimulatory molecules and the secretion of cytokines. Finding in this study may provide important information for vaccine development as well as for understanding the pathogenesis of SARS-like CoV.Keywords
This publication has 45 references indexed in Scilit:
- Immune responses against severe acute respiratory syndrome coronavirus induced by virus‐like particles in miceImmunology, 2007
- Full-length genome sequences of two SARS-like coronaviruses in horseshoe bats and genetic variation analysisJournal of General Virology, 2006
- Baculovirus-Derived Human Immunodeficiency Virus Type 1 Virus-Like Particles Activate Dendritic Cells and Induce Ex Vivo T-Cell ResponsesJournal of Virology, 2006
- Interaction of severe acute respiratory syndrome-associated coronavirus with dendritic cellsJournal of General Virology, 2006
- Antigenic and Immunogenic Characterization of Recombinant Baculovirus-Expressed Severe Acute Respiratory Syndrome Coronavirus Spike Protein: Implication for Vaccine DesignJournal of Virology, 2006
- pH-Dependent Entry of Severe Acute Respiratory Syndrome Coronavirus Is Mediated by the Spike Glycoprotein and Enhanced by Dendritic Cell Transfer through DC-SIGNJournal of Virology, 2004
- Assembly of human severe acute respiratory syndrome coronavirus-like particlesBiochemical and Biophysical Research Communications, 2004
- The Genome Sequence of the SARS-Associated CoronavirusScience, 2003
- Characterization of a Novel Coronavirus Associated with Severe Acute Respiratory SyndromeScience, 2003
- The Dendritic Cell System and its Role in ImmunogenicityAnnual Review of Immunology, 1991