Microstructures of phases in indented silicon: A high resolution characterization

Abstract
This letter investigates the structural changes in monocrystalline silicon caused by microindentation with the aid of the high-resolution transmission electron microscopy. It shows that the transformation zone is amorphous when the maximum indentation load, Pmax, is low, but a crystalline phase of high-pressure R8/BC8 can appear when Pmax increases. The nanodeformation of the pristine silicon outside the transformation zone proceeds with the mechanical bending and distortion of the crystalline planes. Certain extent of plastic deformation took place due to dislocation slipping. The results seem to indicate that the shear stress component played an important role in the deformation of the transformation zone.