Using Extremes to Design Products and Segment Markets

Abstract
Current marketing methodologies used to study consumers are inadequate for identifying and understanding respondents whose preferences for a product offering are most extreme. These “extreme respondents” have important implications for product design and market segmentation decisions. The authors develop a hierarchical Bayes random-effects model and apply it to a conjoint study of credit card attributes. Their proposed model facilitates an in-depth study of respondent heterogeneity, especially of extreme respondents. The authors demonstrate the importance of characterizing extremes in identifying product attributes and predicting the success of potential products.

This publication has 17 references indexed in Scilit: