An MOS transistor model for RF IC design valid in all regions of operation
Top Cited Papers
- 7 August 2002
- journal article
- Published by Institute of Electrical and Electronics Engineers (IEEE) in IEEE Transactions on Microwave Theory and Techniques
- Vol. 50 (1) , 342-359
- https://doi.org/10.1109/22.981286
Abstract
This paper presents an overview of MOS transistor modeling for RF integrated circuit design. It starts with the description of a physical equivalent circuit that can easily be implemented as a SPICE subcircuit. The MOS transistor is divided into an intrinsic part, representing mainly the active part of the device, and an extrinsic part responsible for most of the parasitic elements. A complete charge-based model of the intrinsic part is presented. The main advantage of this new charge-based model is to provide a simple and coherent description of the DC, AC, nonquasi-static (NQS), and noise behavior of the intrinsic MOS that is valid in all regions of operation. It is based on the forward and reverse charges q/sub f/ and q/sub r/ defined as the mobile charge densities, evaluated at the source and at the drain. This intrinsic model also includes a new simplified NQS model that uses a bias and frequency normalization allowing one to describe the high-order frequency behavior with only two simple functions. The extrinsic model includes all the terminal access series resistances, and particularly the gate resistance, the overlap, and junction capacitances as well as a substrate network. The latter is required to account for the signal coupling occurring at RF from the drain to the source and the bulk, through the junction capacitances. The noise model is then presented, including the effect of the substrate resistances on the RF noise parameters. All the aspects of the model are validated for a 0.25-/spl mu/m CMOS process.Keywords
This publication has 43 references indexed in Scilit:
- High-frequency application of MOS compact models and their development for scalable RF model librariesPublished by Institute of Electrical and Electronics Engineers (IEEE) ,2002
- RF MOSFET modeling accounting for distributed substrate and channel resistances with emphasis on the BSIM3v3 SPICE modelPublished by Institute of Electrical and Electronics Engineers (IEEE) ,2002
- A compact non-quasi-static extension of a charge-based MOS modelIEEE Transactions on Electron Devices, 2001
- A novel approach to charge-based non-quasi-static model of the MOS transistor valid in all modes of operationSolid-State Electronics, 2000
- MOS Transistor Modeling Issues for RF Circuit DesignPublished by Springer Nature ,1999
- RF CMOS ModellingPublished by Springer Nature ,1999
- A nonlinear microwave MOSFET model for SPICE simulatorsIEEE Transactions on Microwave Theory and Techniques, 1998
- A small-signal MOSFET model for radio frequency IC applicationsIEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1997
- A compact-charge LDD-MOSFET modelIEEE Transactions on Electron Devices, 1997
- A charge-oriented model for MOS transistor capacitancesIEEE Journal of Solid-State Circuits, 1978