Abstract
Temperature-responsive poly(N-isopropylacrylamide) (PNIPAm)-encapsulated polystyrene latex was prepared via a layer-by-layer self-assembly of cationic and anionic polyNIPAms alternately. Studies showed that the size of PNIPAm-encapsulated polystyrene particles (m-PS) increased with the encapsulation manipulation, as verified by both transmission electron microscopy and dynamic light scattering measurements. The m-PS underwent a dramatic volume decrease at the lower critical solution temperature (LCST) of PNIPAm, with the onset temperature shifting to a higher temperature range as the number of encapsulating layers increased. A qualitative study on the adsorption behavior of Ag nanoparticles revealed that while the pristine (p) Ag nanoparticles were predominantly adsorbed on the m-PS below the LCST, the hydrophobically modified one (m-Ag) was preferentially adsorbed on the same PS above the LCST, which corresponded to the hydrophilic to hydrophobic transition of the m-PS at the LCST.