Abstract
The scandium alkyl Cp*(2)ScCH(2)CMe(3) (2) was synthesized by the addition of a pentane solution of LiCH(2)CMe(3) to Cp*(2)ScCl at low temperature. Compound 2 reacts with the C-H bonds of hydrocarbons including methane, benzene, and cyclopropane to yield the corresponding hydrocarbyl complex and CMe(4). Kinetic studies revealed that the metalation of methane proceeds exclusively via a second-order pathway described by the rate law: rate = k[2][CH(4)] (k = 4.1(3) x 10(-4) M(-1)s(-1) at 26 degrees C). The primary inter- and intramolecular kinetic isotope effects (k(H)/k(D) = 10.2 (CH(4) vs CD(4)) and k(H)/k(D) = 5.2(1) (CH(2)D(2)), respectively) are consistent with a linear transfer of hydrogen from methane to the neopentyl ligand in the transition state. Activation parameters indicate that the transformation involves a highly ordered transition state (DeltaS++ = -36(1) eu) and a modest enthalpic barrier (DeltaH++ = 11.4(1) kcal/mol). High selectivity toward methane activation suggested the participation of this chemistry in a catalytic hydromethylation, which was observed in the slow, Cp*(2)ScMe-catalyzed addition of methane across the double bond of propene to form isobutane.

This publication has 70 references indexed in Scilit: