High-resolution NMR study of a synthetic oligoribonucleotide with a tetranucleotide GAGA loop that is a substrate for the cytotoxic protein, ricin
- 11 December 1993
- journal article
- research article
- Published by Oxford University Press (OUP) in Nucleic Acids Research
- Vol. 21 (24) , 5670-5678
- https://doi.org/10.1093/nar/21.24.5670
Abstract
Ricin is a cytotoxic protein that inactivates ribosomes by hydrolyzing the N-glycosidic bond at position A4324 in eukaryotic 28S rRNA. Its substrate domain forms a double helical stem and a 17-base loop that includes the sequence GAGA, the second adenosine of which corresponds to A4324. Recently, studies of mutant RNAs have shown that the four-nucleotide loop, GAGA, can function as a substrate for ricin. To investigate the structure that is recognized by ricin, we studied the properties of a short synthetic substrate, the dodecaribonucleotide r-CUCAGAGAUGAG, which forms a RNA hairpin structure with a GAGA loop and a stem of four base pairs. The results of NMR spectroscopy allowed us to construct the solution structure of this oligonucleotide by restrained molecular-dynamic calculations. We found that the stem region exists as an A-form duplex. 5G and 8A in the loop region form an unusual G:A base pair, and the phosphodiester backbone has a turn between 5G and 6A. This turn seems to help ricin to gain access to 6A which is the only site of depurination in the entire structure. The overall structure of the GAGA loop is similar to those of the GAAA and GCAA loops that have been described but that are not recognized by ricin. Therefore, in addition to the adenosine at the depurination site, the neighboring guanosine on the 3′ side (7G) may also play a role in the recognition mechanism together with 5G and 8A.Keywords
This publication has 26 references indexed in Scilit:
- The conformation of loop E of eukaryotic 5S ribosomal RNABiochemistry, 1993
- X-ray analysis of substrate analogs in the ricin A-chain active siteJournal of Molecular Biology, 1992
- Ribosomal RNA identity elements for ricin A-chain recognition and catalysisJournal of Molecular Biology, 1992
- Determination by systematic deletion of the amino acids essential for catalysis by ricin A chain.Proceedings of the National Academy of Sciences, 1992
- Ribosomal RNA identity elements for ricin A-chain recognition and catalysisJournal of Molecular Biology, 1991
- Site‐directed mutagenesis of ricin A‐chain and implications for the mechanism of actionProteins-Structure Function and Bioinformatics, 1991
- Routing of internalized ricin and ricin conjugates to the Golgi complex.The Journal of cell biology, 1986
- Assessment of a model for intron RNA secondary structure relevant to RNA self-splicing — a reviewGene, 1984
- Phosphorus-31 NMR of double- and triple-helical nucleic acidsBiochemistry, 1982
- The interaction of Ricinus communis agglutinin with normal and tumor cell surfacesBiochimica et Biophysica Acta (BBA) - Biomembranes, 1972