Voltage-dependent block of endothelial volume-regulated anion channels by calix[4]arenes

Abstract
We have studied the effects of calix[4]arenes on the volume-regulated anion channel (VRAC) currents in cultured calf pulmonary artery endothelial cells. TS- and TS-TM-calix[4]arenes induced a fast inhibition at positive potentials but were ineffective at negative potentials. Maximal block occurred at potentials between 30 and 50 mV. Lowering extracellular pH enhanced the block and shifted the maximum inhibition to more negative potentials. Current inhibition was also accompanied by an increased current noise. From the analysis of the calix[4]arene-induced noise, we obtained a single-channel conductance of 9.3 ± 2.1 pS (n = 9) at +30 mV. The voltage- and time-dependent block were described using a model in which calix[4]arenes bind to a site at an electrical distance of 0.25 inside the channel with an affinity of 220 μM at 0 mV. Binding occludes VRAC at moderately positive potentials, but calix[4]arenes permeate the channel at more positive potentials. In conclusion, our data suggest an open-channel block of VRAC by calix[4]arenes that also depends on the protonation of the binding site within the pore.