High Phase-Lag-Order Runge--Kutta and Nyström Pairs
- 1 January 1999
- journal article
- Published by Society for Industrial & Applied Mathematics (SIAM) in SIAM Journal on Scientific Computing
- Vol. 21 (2) , 747-763
- https://doi.org/10.1137/s1064827597315509
Abstract
We exploit the freedom in the selection of the free parameters of one family of eighth-algebraic-order Runge--Kutta (RK) pairs and of three families of fourth-, sixth-, and eighth-order RK Nyström (RKN) pairs with the purpose of obtaining specific pairs of the highest possible phase-lag order, which are also characterized by minimized principal truncation error coefficients. We present a method for the analytic derivation of the dissipation-order conditions for RK methods and the phase-lag- and dissipation-order conditions for Nyström methods. The RK pairs we study here are based on a one-parameter generalization of some older families of pairs. An algorithm and specific optimized 8(6) Nyström pairs are also provided. For a class of initial value problems, whose solution is known to be described by free oscillations or free oscillations of low frequency with forced oscillations of high frequency superimposed, over long integration intervals, these new pairs seem to offer some advantages with respect to some older pairs. The latter are of the same algebraic orders as the new ones but are characterized by the minimal phase-lag order according to their algebraic order and number of stages.Keywords
This publication has 12 references indexed in Scilit:
- A family of fifth-order Runge-Kutta pairsMathematics of Computation, 1996
- Spline collocation methods for nonlinear Volterra integral equations with unknown delayJournal of Computational and Applied Mathematics, 1996
- A General Family of Explicit Runge–Kutta Pairs of Orders $6(5)$SIAM Journal on Numerical Analysis, 1996
- Runge-Kutta pairs for periodic initial value problemsComputing, 1993
- High-Order Embedded Runge-Kutta-Nystrom FormulaeIMA Journal of Numerical Analysis, 1987
- Explicit Runge–Kutta (–Nyström) Methods with Reduced Phase Errors for Computing Oscillating SolutionsSIAM Journal on Numerical Analysis, 1987
- Families of Runge-Kutta-Nystrom FormulaeIMA Journal of Numerical Analysis, 1987
- Two FORTRAN packages for assessing initial value methodsACM Transactions on Mathematical Software, 1987
- Some practical Runge-Kutta formulasMathematics of Computation, 1986
- High-order Explicit Runge-Kutta Formulae, Their Uses, and LimitationsIMA Journal of Applied Mathematics, 1975