Application of adaptive fuzzy rule-based models for reconstruction of missing precipitation events

Abstract
This paper describes a fuzzy rule-based approach applied for reconstruction of missing precipitation events. The working rules are formulated from a set of past observations using an adaptive algorithm. A case study is carried out using the data from three precipitation stations in northern Italy. The study evaluates the performance of this approach compared with an artificial neural network and a traditional statistical approach. The results indicate that, within the parameter sub-space where its rules are trained, the fuzzy rule-based model provided solutions with low mean square error between observations and predictions. The problems that have yet to be addressed are overfitting and applicability outside the range of training data.

This publication has 7 references indexed in Scilit: