On the Influences of Vertical Wind Shear on Symmetric Tropical Cyclone Structure Derived from AMSU

Abstract
Axisymmetric temperatures and gradient-balanced winds associated with tropical cyclones derived from the Advanced Microwave Sounding Unit are stratified by the 24-h averaged vector difference of the horizontal wind between 200 and 850 hPa (or vertical wind shear). Using 186 total cases that are limited to tropical cyclones with intensities greater than 33 m s−1 (or mature) and are located over sea surface temperatures greater than 26.4°C, vertical wind shear–based composites are created. Results show that as the vertical wind shear increased, the upper-level warm-core structure associated with the tropical cyclone descended, resulting in a shallower balanced vortex. These observationally based results are presented in the context of recent mesoscale modeling results of the effect of shear on tropical cyclone structure.